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Short-time dynamics of a two-dimensional majority vote model
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Short-time Monte Carlo methods are used to study the nonequilibrium ferromagnetic phase transition in a
majority vote model in two dimensions. The existence of an initial critical slip regime is verified. The measured
values of dynamic exponentsz52.170(5) andu50.191(2) are in excellent agreement with those of the
kinetic Ising model universality class.@S1063-651X~98!00301-8#

PACS number~s!: 05.70.Ln, 05.50.1q, 64.60.Ht, 02.70.Lq
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The identification and characterization of universal
classes for nonequilibrium systems are far less settled tha
the case of systems in thermal equilibrium. Neverthele
many model systems with microscopic irreversible dynam
rules~no detailed balance! and two states per site have be
found to fall in the Ising model universality class as far
the static behavior is concerned@1–8#. Grinstein,
Jayaprakash, and Yu He@9# have argued that, provided th
rules are up-down symmetric, both the statics and the~long-
time! dynamics of those models are the same as those o
kinetic Ising model. However, we are not aware of any dir
determination of the dynamicz exponent for such models. I
the present work we have applied the recently propo
early-time dynamic Monte Carlo technique@10–12# to inves-
tigate the dynamic behavior of a model in the abov
mentioned class: the majority vote model~whose rates can
be seen as a combination of two Glauber dynamics in con
with two heat baths at different temperatures! @13,1#. Previ-
ous studies of short-time dynamics were concerned ei
with equilibrium systems, such as Ising@14,11,12# or Potts
@15–17# models, or with a nonequilibrium phase transition
a distinct universality class@18#.

Janssen, Schaub, and Schmittmann@10# have shown that
when a system with relaxational dynamics is quenched fr
T@Tc to Tc , the early times of evolution also display un
versal behavior. An independent exponentu, associated with
the anomalous dimension of the initial order parameter, w
introduced to describe the system behavior during thiscriti-
cal initial slip regime. Denoting bym0 the initial magnetiza-
tion (0,m0!1), this regime is found in the time rang
tmic,t,m0

2z/x0, where tmic is some microscopic time an
x05uz1b/n (b andn are the equilibrium critical indices!.
The magnetization@m(t)5N21( i^s i&# increases with time
as

m~ t !;m0tu. ~1!

u is also related to the decay of the autocorrelation funct
from a disordered initial state

A~ t !;t2l, ~2!

with l5d/z2u in d space dimensions. The relation betwe
short-time dynamics and damage spreading was rece
clarified by Grassberger@19#.
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For a finite system it is expected@10,11# that the moments
of the order parameterm(k) (kth moment of the magnetiza
tion! have the scaling form

m~k!~ t,t,L,m0!5b2kb/nm~k!~b2zt,b21/nt,bL,b2x0m0!,
~3!

where t5(T2Tc)/Tc and the initial correlation length is
null. Settingt50 and the arbitrary scaling factorb;t1/z, one
obtains from Eq.~3!

m~ t,L,m0!;t2b/nzF~ t/tL ,t/t0!, ~4!

wheretL;Lz andt05m0
2z/x0. Following the scaling relations

for the magnetization and its higher moments, it is possi
to infer that the time-dependent Binder cumulant@20#

U~ t,L !512
m~4!

3~m~2!!2
~5!

obeys

U~ t,L1!5U~b2zt,L2! ~6!

for t50, m050, and two system sizes (L1 and L2) with
b5L2 /L1. The exponentz can be obtained from a data co
lapse with a time rescaling factorb2z. Since only early times
are considered, this is a rather efficient method to extracz.
Oncez is known, the static exponentb/n is recovered from
a similar scaling analysis ofm(2).

Starting with random initial configurations~with m050)
and following the evolution atTc of the spin autocorrelation
function

A~ t !5
1

NK (
i 51

N

s i~0!s i~ t !L , ~7!

the power-law decay~2! is visible after a short transient re
gime andl ~and thereforeu) can be obtained@16#. A direct
measurement ofu is possible from Eq.~1!: The samples are
then prepared with a sharply defined small value ofm0. After
a few Monte Carlo steps~MCS! a straight line appears in th
log-log plots andu is computed from its slope.

The two-state isotropic majority vote model is defined@1#
by a set of ‘‘voters’’ or ‘‘spin’’ variables$s i% taking the
108 © 1998 The American Physical Society
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57 109SHORT-TIME DYNAMICS OF A TWO-DIMENSIONAL . . .
values11 or 21 and evolving in time by a single spin-flip
like dynamics with a probabilityWi given by

Wi~s!5
1

2F12s i~122q!SS (
d

s i 1dD G , ~8!

whereS(x)5sgn(x) if x50, S(x)50 if x50, and the sum
is over nearest neighbors ofs i . The control parameterq
plays the role of temperature in equilibrium systems a
measures the probability of aligning antiparallel to the m
jority of neighbors. In two dimensions this model has a fe
romagnetic stationary phase for 0<q<qc undergoing a
second-order phase transition to a paramagnetic phaseqc
†qc50.075(1) for a square lattice@1,5#‡. The static critical
behavior is Onsager-like@1,5,8#. According to the argumen
of Grinstein et al. @9#, its dynamic critical behavior is the
same as model A ~Ising! @21# and therefore the
renormalization-group analysis of Janssenet al. should also
apply to such a nonequilibrium model. The aim of this pap
is to report a direct confirmation of the above conjectu
from the results of a short-time dynamics study of th
model. The exponentsz andu are found to be indistinguish
able from the corresponding Ising values,z52.172(6)@19#,
z52.1665(12)@22#, andu50.191(3)@19# and the existence
of an intermediate scaling regime is verified.

Simulations were carried out for square lattices of s
L516, 32, 64, and 128 with periodic boundary condition
Random initial configurations withm050 were used in the
study of U(t) and A(t), whereas a small excess of plu
spins, randomly distributed on the lattice, was taken to p
duce a selected value ofm050. In order to prepare a sampl
with a precise magnetization and negligible correlati
length, we generated a lattice state with equal probability
occupation for both spin states and then flipped the spin
randomly chosen sites until the desired magnetization w
obtained. The lattice was updated by flipping random
picked spins@23# with probability given by Eq.~8! with
q5qc50.075. The evolution was followed for up to 100
MCS. Averages were performed over a large number of h
tories ~up to 43105 independent initial configurations!.

FIG. 1. Collapse plot of the Binder cumulantU(t,L) as a func-
tion of t/Lz for L58 (*), 16 (h), 32 (s), and 64 (3) with
z52.170. The inset showsU(t,L) againstt ~same symbols!.
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In Fig. 1 Binder’s cumulantU(t,L) is displayed agains
t/Lz for different values of system size and initial magne
zationm050. The value of thez exponent obtained from the
best collapse was 2.170(5), which is in very good agreemen
with the ones obtained by Grassberger@19# from a damage
spreading study and by Nightingale and Blo¨te @22# from a
variance-reducing Monte Carlo algorithm for the tw
dimensional Ising model with nonconservative dynami
Figure 2 shows a plot of logm(t) against logt for
m050.031 25 and different system sizes (L516, 32, 64, and
128); for comparison a straight line with slope 0.191 is a
drawn. The dependence ofu on m0 was analyzed~see Table
I!. A linear extrapolation tom050 yieldsu50.191(2). It is
clear from Fig. 2 thatu can be estimated from the study o
very small system sizes.

In our case, even forL516, the power-law behavior last
for two decades of MCS with an exponent close to our b
value. This shows that for the measurement ofu the finite-
size effects are not important, in contrast with the behav
of the autocorrelation function, where higher values ofL are
necessary. From Fig. 2 we can also obtain an estimate o
crossover timetc when the magnetization changes to t
decreasing power-law behavior (t2b/nz) before entering the
ultimate exponential regime. It is clear that fort,tc the
magnetization presents a power-law increase for all value
L with no significative finite-size effects. It is also remar

FIG. 2. A log-log plot of the time evolution of the magnetiza
tiom m(t) for system sizesL516, 32, 64, and 128 from bottom to
top. The initial magnetization wasm050.031 25. The dashed guid
line has slope 0.191 and was plotted for comparison.

TABLE I. Exponentu as a function ofm0 for L532. The value
obtained form0→0 is u50.191(2), in good agreement with the
values in the literature@16,19#.

m0 u

0.023 437 500 0.1870(20)
0.031 250 000 0.1856(20)
0.058 593 750 0.1809(20)
0.080 078 125 0.1783(20)
m0→0 0.191(2)
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110 57J. F. F. MENDES AND M. A. SANTOS
able that this power law appears at a very small ti
(tmic;1 MCS!.

In Fig. 3 we show a double-logarithmic plot of the aut
correlation functionA(t) as a function of time for differen
values ofL. To get the critical exponentl we discarded the
first 10 MCS.

The best value obtained forl was 0.735(5), which agrees
with recently published results@16#. The scaling relation

FIG. 3. A log-log plot of the autocorrelation functionA(t) for
system sizesL532, 64, and 128~bottom to top! with initial mag-
netizationm050. The dashed guide line has slope 0.735.
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l5d/z2u is well obeyed for the values obtained befor
within the statistical errors.

In summary, we have investigated the dynamic behav
of a critical nonequilibrium model, the two-dimensional m
jority vote model, making use of the early-time dynam
Monte Carlo method. By following the time evolution of th
magnetization, Binder cumulant, and time autocorrelat
function for systems of various sizes, we were able to cal
late numerically the values of the exponentsz52.170(5),
u50.191(2), and l50.735(5). These values are in ver
good agreement with their corresponding two dimensio
Ising results: a direct confirmation of the stability of the k
netic Ising fixed point with respect to irreversibility of th
microscopic rates~of a certain kind!. The effect of the ab-
sence of detailed balance probably has to be sought in p
erties such as the cluster structure and the dynamics of
tern formation @24#. Another dynamic exponentu1, the
global persistent exponent, was recently introduced by M
jumdaret al. @25#. It measures the persistence of the sign
the magnetization and is related tou for a Markovian system
@25#. Evidence of non-Markovian nature was reported fo
nonequilibrium model@26#, but the situation is unclear in th
Ising case@25,27#. The persistence probability of the majo
ity vote model is currently being investigated.

M.A.S. wishes to thank J. Drugowich de Felı´cio for a very
helpful discussion. This work was supported by JNIC
PRAXIS XXI ~Portugal! under Project No: PRAXIS/2/2.1
Fis/299/94.
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